Problem A: Prove that for any positive integer n, there are infinitely many sequences of n consequtive composite positive integers.

Answer: Let n be a positive integer.

The sequences m, m + 1, ..., m + n - 1, where m = t(n + 1)! + 2, t = 1, 2, ... are the sequences of n consequtive composite positive integers, because i + 2 divides m + i and i + 2 < m + i, for i = 0, 1, ..., n - 1, so m + i are composite numbers.

Correct solutions were received from :

(1) Brad Tuttle

POW 9A: 🏟

Problem B: Find the sum:

 $\ln\left(\tan 1^\circ\right) + \ln\left(\tan 2^\circ\right) + \ln\left(\tan 3^\circ\right) + \dots + \ln\left(\tan 89^\circ\right).$

Answer: We note that $\tan l^{\circ} \cdot \tan(90^{\circ} - l^{\circ}) = 1$, $1 \le l \le 89$. Thus, we have

$$2\sum_{l=1}^{89} \ln\left(\tan l^{\circ}\right) = \sum_{l=1}^{89} \left(\ln\left(\tan l^{\circ}\right) + \ln\left(\tan(90^{\circ} - l^{\circ})\right)\right)$$
$$= \sum_{l=1}^{89} \ln\left(\tan l^{\circ} \cdot \tan(90^{\circ} - l^{\circ})\right) = \sum_{l=1}^{89} \ln(1) = 0.$$

Hence

$$\ln\left(\tan 1^\circ\right) + \ln\left(\tan 2^\circ\right) + \ln\left(\tan 3^\circ\right) + \dots + \ln\left(\tan 89^\circ\right) = 0.$$

Correct solutions were received from :

(1) Ali Al Kadhim	POW 9B: ♠
(2) Cody Anderson	POW 9B: 🏟
(3) GAGE HOEFER	POW 9B: 🏟
(4) Brad Tuttle	POW 9B: ♠

 $\mathbf{2}$